The generator matrix 1 0 0 1 1 1 1 1 1 1 1 1 a^2*X 1 1 1 1 1 X 1 1 0 1 1 0 1 a*X a*X 1 1 X 1 1 1 a*X 1 1 1 1 1 X 1 1 a*X 1 0 a^2*X 1 0 1 0 0 X a^2*X 1 a^2*X+a a^2*X+a^2 a^2*X+1 a a*X+a^2 1 a^2*X+1 1 a*X+a a^2 a^2*X+a^2 1 X+a a*X 1 X+1 a^2*X+a 1 a^2*X+a 1 1 X+1 a 1 a*X a^2 1 1 X+1 1 a^2*X+1 a*X+a^2 a^2*X+1 1 a^2*X+a^2 1 1 a^2 1 1 a^2 0 0 1 1 a^2*X+a a^2 X+a^2 X+1 X 0 X X+a X+a^2 a a*X+1 a a*X+1 a*X+a^2 a X+a^2 a*X+a^2 a*X a*X X+1 a^2 0 a^2*X+1 a^2*X+a a^2*X+a X+a^2 X X+a X a*X+a^2 a^2 X X+a a^2*X+a 1 X+1 a*X a^2 X+a^2 a*X+a^2 a*X X+1 X+a^2 a^2*X+a 0 0 0 a^2*X 0 a*X a*X a^2*X 0 a*X a^2*X 0 0 X 0 a^2*X X a*X 0 X X X a^2*X 0 a^2*X X 0 a^2*X a*X 0 a*X a*X a*X a^2*X X X a^2*X 0 a^2*X a*X X a^2*X X a*X a*X a^2*X X X generates a code of length 48 over F4[X]/(X^2) who´s minimum homogenous weight is 133. Homogenous weight enumerator: w(x)=1x^0+288x^133+480x^134+444x^135+261x^136+1044x^137+1104x^138+804x^139+456x^140+1212x^141+1140x^142+876x^143+408x^144+1008x^145+1116x^146+972x^147+414x^148+1008x^149+1044x^150+552x^151+213x^152+636x^153+420x^154+192x^155+12x^156+180x^157+72x^158+9x^160+6x^164+12x^168 The gray image is a linear code over GF(4) with n=192, k=7 and d=133. This code was found by Heurico 1.16 in 0.905 seconds.